
Syntax-based Alignment of Multiple Translations: Extracting Paraphrases
and Generating New Sentences

Bo Pang
Department of Computer Science

Cornell University
Ithaca, NY 14853 USA

pabo@cs.cornell.edu

Kevin Knight and Daniel Marcu
Information Sciences Institute

University of Southern California
Marina Del Rey, CA 90292 USA
{knight,marcu }@isi.edu

Abstract

We describe a syntax-based algorithm that au-
tomatically builds Finite State Automata (word
lattices) from semantically equivalent transla-
tion sets. These FSAs are good representa-
tions of paraphrases. They can be used to ex-
tract lexical and syntactic paraphrase pairs and
to generate new, unseen sentences that express
the same meaning as the sentences in the input
sets. Our FSAs can also predict the correctness
of alternative semantic renderings, which may
be used to evaluate the quality of translations.

1 Introduction

In the past, paraphrases have come under the scrutiny
of many research communities. Information retrieval re-
searchers have used paraphrasing techniques for query re-
formulation in order to increase the recall of information
retrieval engines (Sparck Jones and Tait, 1984). Natural
language generation researchers have used paraphrasing
to increase the expressive power of generation systems
(Iordanskaja et al., 1991; Lenke, 1994; Stede, 1999).
And researchers in multi-document text summarization
(Barzilay et al., 1999), information extraction (Shinyama
et al., 2002), and question answering (Lin and Pantel,
2001; Hermjakob et al., 2002) have focused on identi-
fying and exploiting paraphrases in the context of recog-
nizing redundancies, alternative formulations of the same
meaning, and improving the performance of question an-
swering systems.

In previous work (Barzilay and McKeown, 2001; Lin
and Pantel, 2001; Shinyama et al., 2002), paraphrases
are represented as sets or pairs of semantically equiva-
lent words, phrases, and patterns. Although this is ade-
quate in the context of some applications, it is clearly too
weak from a generative perspective. Assume, for exam-
ple, that we know that text pairs (stock market rose, stock

market gained) and (stock market rose, stock prices rose)
have the same meaning. If we memorized only these two
pairs, it would be impossible to infer that, in fact, con-
sistent with our intuition, any of the following sets of
phrases are also semantically equivalent:{stock market
rose, stock market gained, stock prices rose, stock prices
gained} and{stock market, stock prices} in the con-
text of roseor gained; {market rose}, {market gained
}, {prices rose} and{prices gained} in the context of
stock; and so on.

In this paper, we propose solutions for two problems:
the problem of paraphrase representation and the problem
of paraphrase induction. We propose a new, finite-state-
based representation of paraphrases that enables one to
encode compactly large numbers of paraphrases. We also
propose algorithms that automatically derive such repre-
sentations from inputs that are now routinely released in
conjunction with large scale machine translation evalu-
ations (DARPA, 2002): multiple English translations of
many foreign language texts. For instance, when given
as input the 11 semantically equivalent English transla-
tions in Figure 1, our algorithm automatically induces the
FSA in Figure 2, which represents compactly 49 distinct
renderings of the same semantic meaning. Our FSAs
capture both lexical paraphrases, such as{fighting, bat-
tle}, {died, were killed} and structural paraphrases such
as {last week’s fighting, the battle of last week}. The
contexts in which these are correct paraphrases are also
conveniently captured in the representation.

In previous work, Langkilde and Knight (1998) used
word lattices for language generation, but their method
involved hand-crafted rules. Bangalore et al. (2001) and
Barzilay and Lee (2002) both applied the technique of
multi-sequence alignment (MSA) to align parallel cor-
pora and produced similar FSAs. For their purposes,
they mainly need to ensure the correctness of consensus
among different translations, so that different constituent
orderings in input sentences do not pose a serious prob-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Syntax-based Alignment of Multiple Translations: Extracting
Paraphrases and Generating New Setences

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Information Sciences Institute ,4676 Admiralty
Way,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. At least 12 people were killed in the battle last week. 2. At least 12 people lost their lives in last week’s fighting.
3. Last week’s fight took at least 12 lives. 4. The fighting last week killed at least 12.
5. The battle of last week killed at least 12 persons. 6. At least 12 persons died in the fighting last week.
7. At least 12 died in the battle last week. 8. At least 12 people were killed in the fighting last week.
9. During last week’s fighting, at least 12 people died. 10. Last week at least twelve people died in the fighting.

11. Last week’s fighting took the lives of twelve people.

Figure 1: Sample Sentence Group from the Chinese-English DARPA Evaluation Corpus: 11 English translations of
the same Chinese sentence.

at

during

 last

the

least

last

week

battle

fighting

 were

died

 lost

killed

in

their

 12

persons

e

people

the

last

week
battle

fighting

lives

in

last

week

fighting
’s

at

’s

least

fighting

fight

died

in

peopletwelve

the

at

least

died

week

fighting’s

people12

killed

took

the

at
of

last
week

lives

least

of

twelve people

12
lives

persons

e

Figure 2: FSA produced by our syntax-based alignment algorithm from the input in Figure 1.

e

 the

during

e

fighting

battle
 last

e

week

weeks

fight

fighting

e

killed

of took

e

the

at

lives

least

of

twelve

12

people

persons

e

lives

died

e
 in

e
the

e

battle

fighting

 e

last

weeks

week

fighting

e

e

people

lost

were

their

killed

Figure 3: FSA produced by a Multi-Sequence Alignment algorithm from the input in Figure 1.

lem. In contrast, we want to ensure the correctness of
all paths represented by the FSAs, and direct application
of MSA in the presence of different constituent orderings
can be problematic. For example, when given as input the
same sentences in Figure 1, one instantiation of the MSA
algorithm produces the FSA in Figure 3, which contains
many “bad” paths such asthe battle of last week’s fight-
ing took at least 12 people lost their people died in the
fighting last week’s fighting(See Section 4.2.2 for a more
quantitative analysis.). It’s still possible to use MSA if,
for example, the input is pre-clustered to have the same
constituent ordering (Barzilay and Lee (2003)). But we
chose to approach this problem from another direction.
As a result, we propose a new syntax-based algorithm to
produce FSAs.

In this paper, we first introduce the multiple transla-
tion corpus that we use in our experiments (see Section
2). We then present the algorithms that we developed to
induce finite-state paraphrase representations from such
data (see Section 3). An important part of the paper is
dedicated to evaluating the quality of the finite-state rep-
resentations that we derive (see Section 4). Since our rep-
resentations encode thousands and sometimes millions of
equivalent verbalizations of the same meaning, we use
both manual and automatic evaluation techniques. Some

of the automatic evaluations we perform are novel as
well.

2 Data

The data we use in this work is the LDC-available
Multiple-Translation Chinese (MTC) Corpus1 developed
for machine translation evaluation, which contains 105
news stories (993 sentences) from three sources of jour-
nalistic Mandarin Chinese text. These stories were inde-
pendently translated into English by 11 translation agen-
cies. Eachsentence group, which consists of 11 semanti-
cally equivalent translations, is a rich source for learning
lexical and structural paraphrases. In our experiments,
we use 899 of the sentence groups — the sentence groups
with sentences longer than 45 words were dropped.

3 A Syntax-Based Alignment Algorithm

Our syntax-based alignment algorithm, whose pseu-
docode is shown in Figure 4, works in three steps. In the
first step (lines 1-5 in Figure 4), we parse every sentence
in a sentence group and merge all resulting parse trees
into a parse forest. In the second step (line 6), we extract

1Linguistic Data Consortium (LDC) Catalog Number
LDC2002T01, ISBN 1-58563-217-1.

1. ParseForest =ε
2. foreachs ∈ SentenceGroup
3. t = parseTree(s);
4. ParseForest = Merge(ParseForest, t);
5. endfor
6. Extract FSA from ParseForest;
7. Squeeze FSA;

Figure 4: The Syntax-Based Alignment Algorithm.

an FSA from the parse forest and then we compact it fur-
ther using a limited form of bottom-up alignment, which
we call squeezing (line 7). In what follows, we describe
each step in turn.

Top-down merging. Given a sentence group, we pass
each of the 11 sentences to Charniak’s (2000) parser to
get 11 parse trees. The first step in the algorithm is to
merge these parse trees into one parse-forest-like struc-
ture using a top-down process.

Let’s consider a simple case in which the parse for-
est contains one single tree, Tree 1 in Figure 5, and we
are adding Tree 2 to it. Since the two trees correspond
to sentences that have the same meaning and since both
trees expand anS node into anNP and aV P , it is rea-
sonable to assume thatNP1 is a paraphrase ofNP2 and
V P1 is a paraphrase ofV P2. We mergeNP1 with NP2

andV P1 with V P2 and continue the merging process on
each of the subtrees recursively, until we either reach the
leaves of the trees or the two nodes that we examine are
expanded using different syntactic rules.

When we apply this process to the trees in Figure 5,
theNP nodes are merged all the way down to the leaves,
and we get “12” as a paraphrase of “twelve” and “people”
as a paraphrase of “persons”; in contrast, the twoV Ps
are expanded in different ways, so no merging is done
beyond this level, and we are left with the information
that “were killed” is a paraphrase of “died”.

We repeat this top-down merging procedure with each
of the 11 parse trees in a sentence group. So far, only
constituents with same syntactic type are treated as para-
phrases. However, later we shall see that we can match
word spans whose syntactic types differ.

Keyword checking. The matching process described
above appears quite strict – the expansions must match
exactly for two nodes to be merged. But consider the fol-
lowing parse trees:
1.(S (NP1 people)(V P1 were killed in this battle))
2.(S (NP2 this battle)(V P2 killed people))
If we applied the algorithm described above, we would
mistakenly alignNP1 with NP2 andV P1 with V P2 —
the algorithm described so far makes no use of lexical

12

twelve

people

persons were killed

died

Merge

Linearization

Tree 1 Tree 2

Parse Forest

FSA / Word Lattice

BEG END

+

S

NP VP

CD
12

NN
persons

AUX
were

VP

VB
killed

S

NP VP

CD
twelve

NN
people

VB
died

NP VP

CD NN
AUX VP

VB

12

twelve

people

persons

...
were

...
killed

...
died

Figure 5: Top-down merging of parse trees and FSA ex-
traction.

information.
To prevent such erroneous alignments, we also imple-

ment a simple keyword checking procedure. We note
that since the word “battle” appears in bothV P1 and
NP2, this can serve as an evidence against the merging of
(NP1, NP2) and (V P1, V P2). A similar argument can
be constructed for the word “people”. So in this exam-
ple we actually have double evidence against merging; in
general, one such clue suffices to stop the merging.

Our keyword checking procedure acts as a filter. A list
of keywords is maintained for each node in a syntactic
tree. This list contains all the nouns, verbs, and adjectives
that are spanned by a syntactic node. Before merging two
nodes, we check to see whether the keyword lists asso-
ciated with them share words with other nodes. That is,
supposed we just merged nodesA andB, and they are ex-
panded with the same syntactic rule intoA1A2...An and
B1B2...Bn respectively; before we merge eachAi with
Bi, we check for eachBi if its keyword list shares com-
mon words with anyAj (j 6= i). If they do not, we con-
tinue the top-down merging process; otherwise we stop.

detroit

 a

building

detroit

detroit

a

 building

building

in

’s

building

building

reduced

to

rubble

flattened

razed

was

blasted

leveled

razed

razed

leveled

 into

to

detroit

building

to
down

the ground

ashes

ground

the
ground

levelled

to

in detroit ground

a. Before squeezing

detroit

 a

e

’s

e

building

building

reduced

e

was

flattened

blasted

leveled

levelled

to

razed

leveled

e

into

to

to

rubble

in detroit

down

ashes

the

e

ground

b. After squeezing

Figure 6: Squeezing effect

In our current implementation, a pair of synonyms can
not stop an otherwise legitimate merging, but it’s possi-
ble to extend our keyword checking process with the help
of lexical resources such as WordNet in future work.

Mapping Parse Forests into Finite State Automata.
The process of mapping Parse Forests into Finite State
Automata is simple. We simply traverse the parse forest
top-down and create alternative paths for every merged
node. For example, the parse forest in Figure 5 is mapped
into the FSA shown at the bottom of the same figure. In
the FSA, there is a word associated with each edge. Dif-
ferent paths between any two nodes are assumed to be
paraphrases of each other. Each path that starts from the
BEGIN node and ends at theEND node corresponds
to either an original input sentence or a paraphrase sen-
tence.

Squeezing. Since we adopted a very strict matching
criterion in top-down merging, a small difference in the
syntactic structure of two trees prevents some legitimate
mergings from taking place. This behavior is also exacer-
bated by errors in syntactic parsing. Hence, for instance,
three edges labeleddetroit at the leftmost of the top FSA
in Figure 6 were kept apart. To compensate for this ef-
fect, our algorithm implements an additional step, which
we call squeezing. If two different edges that go into (or
out of) the same node in an FSA are labeled with the same
word, the nodes on the other end of the edges are merged.
We apply this operation exhaustively over the FSAs pro-
duced by the top-down merging procedure. Figure 6 il-
lustrates the effect of this operation: the FSA at the top
of this figure is compressed into the more compact FSA
shown at the bottom of it. Note that in addition to reduc-
ing the redundant edges, this also gives us paraphrases
not available in the FSA before squeezing (e.g.{reduced
to rubble, blasted to ground}). Therefore, the squeezing
operation, which implements a limited form of lexically
driven alignment similar to that exploited by MSA algo-
rithms, leads to FSAs that have a larger number of paths

and paraphrases.

4 Evaluation

The evaluation for our finite state representations and al-
gorithm requires careful examination. Obviously, what
counts as a good result largely depends on the applica-
tion one has in mind. If we are extracting paraphrases for
question-reformulation, it doesn’t really matter if we out-
put a few syntactically incorrect paraphrases, as long as
we produce a large number of semantically correct ones.
If we want to use the FSA for MT evaluation (for exam-
ple, comparing a sentence to be evaluated with the pos-
sible paths in FSA), we would want all paths to be rela-
tively good (which we will focus on in this paper), while
in some other applications, we may only care about the
quality of the best path (not addressed in this paper). Sec-
tion 4.1 concentrates on evaluating the paraphrase pairs
that can be extracted from the FSAs built by our system,
while Section 4.2 is dedicated to evaluating the FSAs di-
rectly.

4.1 Evaluating paraphrase pairs

4.1.1 Human-based evaluation of paraphrases

By construction, different paths between any two
nodes in the FSA representations that we derive are para-
phrases (in the context in which the nodes occur). To
evaluate our algorithm, we extract paraphrases from our
FSAs and ask human judges to evaluate their correctness.
We compare the paraphrases we collect with paraphrases
that are derivable from the same corpus using a co-
training-based paraphrase extraction algorithm (Barzilay
and McKeown, 2001). To the best of our knowledge, this
is the most relevant work to compare against since it aims
at extracting paraphrase pairs from parallel corpus. Un-
like our syntax-based algorithm which treats a sentence
as a tree structure and uses this hierarchical structural in-
formation to guide the merging process, their algorithm
treats a sentence as a sequence of phrases with surround-
ing contexts (no hierarchical structure involved) and co-
trains classifiers to detect paraphrases and contexts for
paraphrases. It would be interesting to compare the re-
sults from two algorithms so different from each other.

For the purpose of this experiment, we randomly se-
lected 300 paraphrase pairs (Ssyn) from the FSAs pro-
duced by our system. Since the co-training-based al-
gorithm of Barzilay and McKeown (2001) takes paral-
lel corpus as input, we created out of the MTC corpus
55 × 993 sentence pairs (Each equivalent translation set
of cardinality 11 was mapped into

(
11
2

)
equivalent trans-

lation pairs.). Regina Barzilay kindly provided us the list
of paraphrases extracted by their algorithm from this par-
allel corpus, from which we randomly selected another
set of 300 paraphrases (Scotr).

Correct Partial Incorrect

Ssyn 85% 12% 3%
Judge 1 Scotr 68% 13% 19%

Ssyn 80% 13% 7%
Judge 2 Scotr 63% 13% 24%

Ssyn 81% 5% 13%
Judge 3 Scotr 68% 3% 29%

Ssyn 77% 17% 5%
Judge 4 Scotr 68% 16% 16%

Average of Ssyn 81% 12% 7%
All Judges Scotr 66% 11% 22%

Table 1: A comparison of the correctness of the para-
phrases produced by the syntax-based alignment (Ssyn)
and co-training-based (Scotr) algorithms.

The resulting 600 paraphrase pairs were mixed and
presented in random order to four human judges. Each
judge was asked to assess the correctness of 150 para-
phrase pairs (75 pairs from each system) based on the
context, i.e., the sentence group, from which the para-
phrase pair was extracted. Judges were given three
choices: “Correct”, for perfect paraphrases, “Partially
correct”, for paraphrases in which there is only a par-
tial overlap between the meaning of two paraphrases (e.g.
while {saving set, aid package} is a correct paraphrase
pair in the given context,{set, aide package} is consid-
ered partially correct), and “Incorrect”. The results of the
evaluation are presented in Table 1.

Although the four evaluators were judging four differ-
ent sets, each clearly rated a higher percentage of the out-
puts produced by the syntax-based alignment algorithm
as “Correct”. We should note that there are parameters
specific to the co-training algorithm that we did not tune
to work for this particular corpus. In addition, the co-
training algorithm recovered more paraphrase pairs: the
syntax-based algorithm extracted 8666 pairs in total with
1051 of them extracted at least twice (i.e. more or less
reliable), while the numbers for the co-training algorithm
is 2934 out of a total of 16993 pairs. This means we are
not comparing the accuracy on the same recall level.

Aside from evaluating the correctness of the para-
phrases, we are also interested in the degree of overlap
between the paraphrase pairs discovered by the two algo-
rithms so different from each other. We find that out of
the 1051 paraphrase pairs that were extracted from more
than one sentence group by the syntax-based algorithm,
62.3% were also extracted by the co-training algorithm;
and out of the 2934 paraphrase pairs from the results of
co-training algorithm, 33.4% were also extracted by the
syntax-based algorithm. This shows that in spite of the
very different cues the two different algorithms rely on,

range of ASL 1-10 10-20 20-30 30-45
recall 30.7% 16.3% 7.8% 3.8%

Table 2: Recall of WordNet-consistent synonyms.

they do discover a lot of common pairs.

4.1.2 WordNet-based analysis of paraphrases

In order to (roughly) estimate the recall (of lexical syn-
onyms) of our algorithm, we use the synonymy relation
in WordNet to extract all the synonym pairs present in
our corpus. This extraction process yields the list of all
WordNet-consistent synonym pairs that are present in our
data. (Note that some of the pairs identified as synonyms
by WordNet, like “follow/be”, are not really synonyms in
the contexts defined in our data set, which may lead to
artificial deflation of our recall estimate.) Once we have
the list of WordNet-consistent paraphrases, we can check
how many of them are recovered by our method. Table 2
gives the percentage of pairs recovered for each range of
average sentence length (ASL) in the group.

Not surprisingly, we get higher recall with shorter sen-
tences, since long sentences tend to differ in their syn-
tactic structures fairly high up in the parse trees, which
leads to fewer mergings at the lexical level. The recall
on the task of extracting lexical synonyms, as defined
by WordNet, is not high. But after all, this is not what
our algorithm has been designed for. It’s worth notic-
ing that the syntax-based algorithm also picks up many
paraphrases that are not identified as synonyms in Word-
Net. Out of 3217 lexical paraphrases that are learned by
our system, only 493 (15.3%) are WordNet synonyms,
which suggests that paraphrasing is a much richer and
looser relation than synonymy. However, the WordNet-
based recall figures suggest that WordNet can be used as
an additional source of information to be exploited by our
algorithm.

4.2 Evaluating the FSA directly

We noted before that apart from being a natural represen-
tation of paraphrases, the FSAs that we build have their
own merit and deserve to be evaluated directly. Since our
FSAs contain large numbers of paths, we design auto-
matic evaluation metrics to assess their qualities.

4.2.1 Language Model-based evaluation

If we take our claims seriously, each path in our FSAs
that connects the start and end nodes should correspond to
a well-formed sentence. We are interested in both quan-
tity (how many sentences our automata are able to pro-
duce) and quality (how good these sentences are). To an-
swer the first question, we simply count the number of
paths produced by our FSAs.

average N (# of paths) log N
length max ave max ave
1 - 10 22749 775 10.0 5.2

10 - 20 172386 4468 12.1 6.2
20 - 30 3479544 29202 15.1 5.8
30 - 45 684589 4135 13.4 4.5

Table 3: Statistics on Number of Paths in FSAs

random variable mean std. dev
ent(FSA)− ent(SG) −0.11586 1.25162
ent(MTS)− ent(SG) 1.74259 1.05749

Table 4: Quality judged by LM

Table 3 gives the statistics on the number of paths pro-
duced by our FSAs, reported by the average length of
sentences in the input sentence groups. For example, the
sentence groups that have between 10 and 20 words pro-
duce, on average, automata that can yield 4468 alterna-
tive, semantically equivalent formulations.

Note that if we always get the same degree of merging
per word across all sentence groups, the number of paths
would tend to increase with the sentence length. This is
not the case here. Apparently we are getting less merg-
ing with longer sentences. But still, given 11 sentences,
we are capable of generating hundreds, thousands, and in
some cases even millions of sentences.

Obviously, we should not get too happy with our abil-
ity to boost the number of equivalent meanings if they are
incorrect. To assess the quality of the FSAs generated by
our algorithm, we use a language model-based metric.

We train a 4-gram model over one year of the Wall
Street Journal using the CMU-Cambridge Statistical Lan-
guage Modeling toolkit (v2). For each sentence group
SG, we use this language model to estimate the aver-
age entropy of the 11 original sentences in that group
(ent(SG)). We also compute the average entropy of
all the sentences in the corresponding FSA built by our
syntax-based algorithm (ent(FSA)). As the statistics in
Table 4 show, there is little difference between the av-
erage entropy of the original sentences and the average
entropy of the paraphrase sentences we produce. To bet-
ter calibrate this result, we compare it with the average
entropy of 6 corresponding machine translation outputs
(ent(MTS)), which were also made available by LDC
in conjunction with the same corpus. As one can see, the
difference between the average entropy of the machine
produced output and the average entropy of the origi-
nal 11 sentences is much higher than the difference be-
tween the average entropy of the FSA-produced outputs
and the average entropy of the original 11 sentences. Ob-
viously, this does not mean that our FSAs only produce

well-formed sentences. But it does mean that our FSAs
produce sentences that look more like human produced
sentences than machine produced ones according to a lan-
guage model.

4.2.2 Word repetition analysis

Not surprisingly, the language model we used in Sec-
tion 4.2.1 is far from being a perfect judge of sentence
quality. Recall the example of “bad” path we gave in Sec-
tion 1: the battle of last week’s fighting took at least 12
people lost their people died in the fighting last week’s
fighting. Our 4-gram based language model will not find
any fault with this sentence. Notice, however, that some
words (such as “fighting” and “people”) appear at least
twice in this path, although they are not repeated in any
of the source sentences. These erroneous repetitions in-
dicate mis-alignment. By measuring the frequency of
words that are mistakenly repeated, we can now examine
quantitatively whether a direct application of the MSA
algorithm suffers from different constituent orderings as
we expected.

For each sentence group, we get a list of words that
never appear more than once in any sentence in this
group. Given a word from this list and the FSA built
from this group, we count the total number of paths that
contain this word (C) and the number of paths in which
this word appears at least twice (Cr, i.e. number of er-
roneous repetitions). We define therepetition ratio to
beCr/C, which is the proportion of “bad” paths in this
FSA according to this word. If we compute this ra-
tio for all the words in the lists of the first 499 groups2

and the corresponding FSAs produced by an instantia-
tion of the MSA algorithm3, the average repetition ra-
tio is 0.0304992 (14.76% of the words have a non-zero
repetition ratio, and the average ratio for these words is
0.206671). In comparison, the average repetition ratio for
our algorithm is 0.0035074 (2.16% of the words have a
non-zero repetition ratio4, and the average ratio for these
words is 0.162309). The presence of different constituent
orderings does pose a more serious problem to the MSA
algorithm.

4.2.3 MT-based evaluation

Recently, Papineni et al. (2002) have proposed an au-
tomatic MT system evaluation technique (the BLEU
score). Given an MT system output and a set of refer-

2MSA runs very slow for longer sentences, and we believe
using the first 499 groups should be enough to make our point.

3We thank Regina Barzilay for providing us this set of re-
sults

4Note that FSAs produced right after keyword checking will
not yield any non-zero repetition ratio. However, if there are
mis-alignment not prevented by keyword checking in an FSA,
it may contain paths with erroneous repetition of words after
squeezing.

range 0-1 1-2 2-3 3-4 4-5
count 546 256 80 15 2

Table 5: Statistics foredgain

ence translations, one can estimate the “goodness” of the
MT output by measuring the n-gram overlap between the
output and the reference set. The higher the overlap, i.e.,
the closer an output string is to a set of reference transla-
tions, the better a translation it is.

We hypothesize that our FSAs provide a better repre-
sentation against which the outputs of MT systems can
be evaluated because they encode not just a few but thou-
sands of equivalent semantic formulations of the desired
meaning. Ideally, if the FSAs we build accept all and
only the correct renderings of a given meaning, we can
just give a test sentence to the reference FSA and see if
it is accepted by it. Since this is not a realistic expecta-
tion, we measure the edit distance between a string and
an FSA instead: the smaller this distance is, the closer it
is to the meaning represented by the FSA.

To assess whether our FSAs are more appropriate rep-
resentations for evaluating the output of MT systems, we
perform the following experiment. For each sentence
group, we hold out one sentence as test sentence, and try
to evaluate how much of it can be predicted from the other
10 sentences. We compare two different ways of estimat-
ing the predictive power. (a) we compute the edit distance
between the test sentence and the other 10 sentences in
the set. The minimum of this distance ised(input). (b)
we use dynamic programming to efficiently compute the
minimum distance (ed(FSA)) between the test sentence
and all the paths in the FSA built from the other 10 sen-
tences. The smaller the edit distance is, the better we
are predicting a test sentence. Mathematically, the differ-
ence between these two measuresed(input)− ed(FSA)
characterizes how much is gained in predictive power by
building the FSA.

We carry out the experiment described above in a
“leave-one-out” fashion (i.e. each sentence serves as
a test sentence once). Now letedgain be the average
of ed(input) − ed(FSA) over the 11 runs for a given
group. We compute this for all 899 groups and find the
mean foredgain to be 0.91 (std. dev = 0.78). Table 5
gives the count for groups whoseedgain falls into the
specified range. We can see that the majority ofedgain

falls under 2.
We are also interested in the relation between the pre-

dictive power of the FSAs and the number of reference
translations they are derived from. For a given group, we
randomly order the sentences in it, set the last one as the
test sentence, and try to predict it with the first 1, 2, 3,
... 10 sentences. We investigate whether more sentences

ed(FSAn) ed(inputn)
−ed(FSA10) −ed(FSAn)

n mean std. dev mean std. dev
1 5.65 3.86 0 0
2 3.66 3.02 0.19 0.60
3 2.71 2.55 0.33 0.76
4 2.10 2.33 0.46 0.90
5 1.56 2.01 0.56 0.95
6 1.18 1.79 0.65 1.02
7 0.79 1.48 0.75 1.09
8 0.49 1.10 0.81 1.11
9 0.21 0.74 0.89 1.16
10 0 0 0.93 1.21

Table 6: Effect of monotonically increasing the number
of reference sentences

yield an increase in the predictive power.
Let ed(FSAn) be the edit distance from the test sen-

tence to the FSA built on the firstn sentences; similarly,
let ed(inputn) be the minimum edit distance from the
test sentence to an input set that consists of only the first
n sentences. Table 6 reports the effect of using differ-
ent number of reference translations. The first column
shows that each translation is contributing to the predic-
tive power of our FSA. Even when we add the tenth trans-
lation to our FSA, we still improve its predictive power.
The second column shows that the more sentences we add
to the FSA the larger the difference between its predic-
tive power and that of a simple set. The results in Table 6
suggest that our FSA may be used in order to refine the
BLEU metric (Papineni et al., 2002).

5 Conclusion & Future Work

In this paper, we presented a new syntax-based algorithm
that learns paraphrases from a newly available dataset.
The multiple translation corpus that we use in this paper
is the first instance in a series of similar corpora that are
built and made publicly available by LDC in the context
of a series of DARPA-sponsored MT evaluations. The
algorithm we proposed constructs finite state represen-
tations of paraphrases that are useful in many contexts:
to induce large lists of lexical and structural paraphrases;
to generate semantically equivalent renderings of a given
meaning; and to estimate the quality of machine transla-
tion systems. More experiments need to be carried out
in order to assess extrinsically whether the FSAs we pro-
duce can be used to yield higher agreement scores be-
tween human and automatic assessments of translation
quality.

In our future work, we wish to experiment with more
flexible merging algorithms and to integrate better the
top-down and bottom-up processes that are used to in-

duce FSAs. We also wish to extract more abstract para-
phrase patterns from the current representation. Such pat-
terns are more likely to get reused – which would help us
get reliable statistics for them in the extraction phase, and
also have a better chance of being applicable to unseen
data.

Acknowledgments

We thank Hal Dauḿe III, Ulrich Germann, and Ulf Herm-
jakob for help and discussions; Eric Breck, Hubert Chen,
Stephen Chong, Dan Kifer, and Kevin O’Neill for par-
ticipating in the human evaluation; and the Cornell NLP
group and the reviewers for their comments on this pa-
per. We especially want to thank Regina Barzilay and
Lillian Lee for many valuable suggestions and help at var-
ious stages of this work. Portions of this work were done
while the first author was visiting Information Sciences
Institute. This work was supported by the Advanced
Research and Development Activity (ARDA)’s Advance
Question Answering for Intelligence (AQUAINT) Pro-
gram under contract number MDA908-02-C-0007, the
National Science Foundation under ITR/IM grant IIS-
0081334 and a Sloan Research Fellowship to Lillian Lee.
Any opinions, findings, and conclusions or recommen-
dations expressed above are those of the authors and do
not necessarily reflect the views of the National Science
Foundation or the Sloan Foundation.

References

Srinivas Bangalore, German Bordel, and Giuseppe Ric-
cardi. 2001. Computing consensus translation from
multiple machine translation systems. InWorkshop on
Automatic Speech Recognition and Understanding.

Regina Barzilay and Lillian Lee. 2002. Bootstrap-
ping lexical choice via multiple-sequence alignment.
In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 164–171.

Regina Barzilay and Lillian Lee. 2003. Learning to
paraphrase: An unsupervised approach using multiple-
sequence alignment. InProceedings of HLT/NAACL.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. InProceedings
of the ACL/EACL, pages 50–57.

Regina Barzilay, Kathleen McKeown, and Michael El-
hadad. 1999. Information fusion in the context of
multi-document summarization. InProceedings of the
ACL, pages 550–557.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the NAACL.

DARPA. 2002. InDARPA IAO Machine Translation
Workshop, Santa Monica, CA, July 22-23.

Ulf Hermjakob, Abdessamad Echihabi, and Daniel
Marcu. 2002. Natural language based reformulation
resource and web exploitation for question answer-
ing. In Proceedings of the Text Retrieval Conference
(TREC–2002). November.

Lidija Iordanskaja, Richard Kittredge, and Alain Polgére.
1991. Lexical selection and paraphrase in a meaning-
text generation model. In Ćecile L. Paris, William R.
Swartout, and William C. Mann, editors,Natural Lan-
guage Generation in Artificial Intelligence and Com-
putational Linguistics, pages 293–312. Kluwer Aca-
demic Publisher.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proceedings of of ACL/COLING.

Nils Lenke. 1994. Anticipating the reader’s problems
and the automatic generation of paraphrases. InPro-
ceedings of the 15th International Conference on Com-
putational Linguistics, volume 1, pages 319–323, Ky-
oto, Japan, August 5–9.

Dekang Lin and Patrick Pantel. 2001. Discovery of in-
ference rules for question answering. InProceedings
of ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining 2001, pages 323–328.

Kishore Papineni, Salim Roukos, Todd Ward, John Hen-
derson, and Florence Reeder. 2002. Corpus-based
comprehensive and diagnostic MT evaluation: Initial
Arabic, Chinese, French, and Spanish results. InPro-
ceedings of the Human Language Technology Confer-
ence, pages 124–127, San Diego, CA, March 24-27.

Yusuke Shinyama, Satoshi Sekine, Kiyoshi Sudo, and
Ralph Grishman. 2002. Automatic paraphrase acqui-
sition from news articles. InProceedings of the Hu-
man Language Technology Conference (HLT–02), San
Diego, CA, March 24-27. Poster presentation.

Karen Sparck Jones and John I. Tait. 1984. Automatic
search term variant generation.Journal of Documen-
tation, 40(1):50–66.

Manfred Stede. 1999. Lexical Semantics and
Knowledge Representation in Multilingual Text
Generation. Kluwer Academic Publishers,
Boston/Dordrecht/London.

